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ABSTRACT 

Successful product development, especially in motorsport, increasingly depends not just on the ability to 
simulate aero-thermal behavior of complex geometrical configurations, but also the ability to automate these 
simulations within a workflow and perform as many simulations as possible within constrained time frames. 
The core of these aero-thermal simulations - and usually the main bottleneck - is generating the computational 
mesh. 

This paper describes recent work aimed at developing a mesh generator which can reliably produce meshes for 
geometries of essentially arbitrary complexity in an automated manner and fast enough to keep up with the pace 
of an engineering development program. Our goal is to be able to script the mesh generation within an 
automated workflow - and forget it.  

INTRODUCTION 

Many approaches to mesh generation have been put forward - and we have tried most of them. The key 
requirements are the ability to deal with dirty geometry emerging from CAD, to produce acceptable mesh 
quality no matter how complex the geometry, to scale straightforwardly no matter how large the geometry - and 
to never fail. 

The two main novelties of our approach are as follows. First we use a bottom-up octree derived from a space 
filling curve as a background mesh - with variable depth refinement to match variable geometry curvature. This 
background octree captures the geometry reliably even if the geometry is dirty. The bottom-up approach allows 
efficient dynamic load balancing of the mesh onto a multi-core compute cluster. Second, we construct a body-
conformal mesh, with viscous layer cells, via shape insertion and mesh morphing based on continuous control 
of mesh quality via a set of mesh metrics (warpage, skew, smoothness) and optimization algorithms. Finally, 
hanging nodes are removed and the mesh exported in standard hybrid mesh formats. The mesh can also be post-
processed into polyhedral form to reduce cell count. With our approach, complex geometries exported from 
CAD via STL/VRML can be reliably converted into meshes containing many millions of cells in a matter of 
tens of minutes on a modest CPU cluster. 
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The organization of the paper is as follows: first the basis of the methodology will be described and illustrated. 
Then, application to some geometries of automotive relevance will be presented. Finally, potential future work 
will be described. 

METHODOLOGY 

Our methodology has been described in detail in a series of papers - Dawes et al [2005-2010]. Our intention 
here is to summarize the key elements of our approach and attempt to demonstrate its advantages. 

The starting point is the geometry represented in any tesselated format, STL or VRML, and preferably exported 
as a set of parts from a CAD solid modeler (to increase simulation productivity by allowing automated 
boundary associativity as described for example by Haimes et al [1998]). This geometry can be "dirty" in the 
sense that there can be small gaps in the STL or the STL may be locally folded or distorted - our approach 
simply meshes over the top of these imperfections. Geometrical features are resolved down to the requested 
smallest mesh scales, sub-scale geometrical features are automatically smoothed. The imported geometry is 
captured as a distance field and managed as a Level Set using a methodology developed from the work of 
Adalsteinsson et al [1995]. This implicit solid model is available to both guide the mesh generation itself and to 
support downstream geometry editing and morphing operations (which will not be discussed further in this 
paper but Baerentzen [2001] and Dawes [2005] are relevant references). 

The first step in the mesh generation is to develop a bottom-up octree derived from a space filling curve (see 
Samet [1990] or Sagan [1994]) as a background mesh.  Variable depth refinement is employed to match local 
mesh scale to variable geometry curvature. Figure 1 illustrates this: the zero Level Set - the geometry - is cut 
into the mesh using standard computer graphics constructs, see for example Glassner [1990+].This "cutting" is 
very efficient and scales very well even to arbitrarily sized geometries. This bottom-up approach is already 
known, see for example Tu et al [2006], but has not been commonly adopted in other meshing systems (see for 
example Aftosmis et al [1998] or Bussoletti et al [1985]). We selected it because it allows efficient dynamic 
load balancing of the mesh onto a multi-core PC cluster. Figure 2 shows a simple mesh and its associated Space 
Filling Curve, BFJKLMHIDE (which is a Morton Z-curve sequence derived by interleaving each cell's 
locational code) followed by division into two domains, "yellow" (BFJKL) and "green" (MHIDE) thus 
achieving good load balancing. 

The second step in the mesh generation process is the construction of a body-conformal mesh, with viscous 
layer cells. This is based on a combination of "shape insertion"  (developed from the ideas of Yerry et al [1983]) 
and mesh morphing based on continuous control of mesh quality measured via a set of mesh metrics (warpage, 
skew, smoothness) and managed by formal optimization algorithms. Figure 3 illustrates this twin approach. 
After this, as a post-processing filter, hanging nodes are removed and the mesh exported in standard hybrid 
mesh formats.  

Several particular aspects of the mesh generation deserve special mention and are illustrated in Figure 4. First is 
the need for automatic feature detection to manage and resolve convex corners; the illustration shows the 
surface mesh on a ribbed structure with and without this feature turned on. The other two illustrations show 
layer meshing (on a turbine blade) and polyhedralised export which usefully reduces cell count. 

With our approach, complex geometries can be reliably converted into meshes containing many millions of 
cells in a matter of tens of minutes on a modest CPU cluster. Although the meshing can be driven by a GUI we 
have specifically designed the system to be fully automatable and scriptable to be embedded within a workflow. 
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Figure 1: Bottom-up Octree; the Level Set zero, "green" cuts the emerging octree using standard computer 
graphics constructs. 

 

 

Figure 2: Parallel load balancing via a Space Filling Curve: BFJKLMHIDE is a Morton Z-curve sequence 
derived by interleaving each cell's locational code and division here into two domains, "yellow" (BFJKL) and 

"green" (MHIDE) achieves good load balancing. 

 

 

Figure 3: Body-conformal mesh generation via shape insertion and mesh morphing. 
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Figure 4: Particular aspects of the mesh generation: top row, convex corners without (left) and with (right) 
automatic feature detection; bottom left, layer meshing; bottom right, polyhedralised export 

 

RESULTS 

To illustrate applications of our approach we show three representative sets of meshes. These are all generated 
from generic geometries available from public domain websites. 

The first, shown in Figure 5, is a generic brake assembly showing a conjugate mesh for CHT (conjugate heat 
transfer) analysis; the air-side is colored red and the metal-side, green. The mesh contains around 10M cells and 
was generated on about 15 minutes from STL import to hybrid mesh export. 

The second example, Figure 6 represents a generic motor bike: top left is the imported STL geometry file; the 
other pictures illustrate the surface mesh and associated slices through the volume mesh. This mesh contains 
around 30M cells and was generated on about 20 minutes from STL import to hybrid mesh export. 

The final example, shown in Figure 7, consists of a generic car and under-hood. The mesh contains around 
100M cells and was generated on about 45 minutes from STL import to hybrid mesh export. One shot shows the 
layer mesh on the external air-side of the hood; one shows the well resolved, very complex under-hood domain. 
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Figure 5: A generic brake assembly showing a conjugate mesh for CHT analysis; air=red, metal=green. 

 

SUMMARY/CONCLUSIONS 

This paper has described recent work aimed at developing a mesh generator which can reliably produce meshes 
for geometries of essentially arbitrary complexity in an automated manner and fast enough to keep up with the 
pace of an engineering development program.  

We have tried to illustrate the potential of our approach on a range of representative geometries.  

The mesh generation can be fully automated and scripted within an integrated workflow.  

In future work we will exploit the geometry editing abilities of our underpinning solid model to support design 
optimisation. 
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Figure 6: A generic motor bike: top left is the imported STL; the other pictures illustrate the surface mesh and 
associated slices through the volume mesh. 
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Figure 7: A generic car and under-hood 
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