"Digitalisation", Industry 4.0, the Digital Twin, Data-driven design & manufacturing are set to revolutionise the way we do business. This paper considers this in the engineering world of power generation, gas turbines & power plant - and asks the question: What will it take to make a Digital Twin real. A Digital Twin must have physics-based simulation at its heart and confront three major challenges: Scale of simulation; Scaling the simulation; Responding to data-driven feedback. This paper will discuss these issues in turn and make the case that the ability to represent & manage geometry is the Digital Thread which supports a Digital Twin. We discuss the use of classical BREP CAD and the new Digital Geometry solid modelling kernel we have been developing. We illustrate with examples of recent work we have been performing aimed at addressing these challenges.

I. Introduction: what is a Gas Turbine Digital Twin

The motivation for a Digital Twin is derived from several, key business drivers. First of all, the need to bring new products to market faster means continued pressure to replace expensive physical testing with simulation. Next, the need to avoid – or, if necessary, manage – expensive in-service issues will require increased use of simulation (combined with on-site condition monitoring). The inexorable trend is for component-based optimisation to be replaced by system or sub-system optimisation requiring multi-disciplinary simulation of larger assemblies of geometry – and including transients and FSI (flutter etc.). We must think more broadly and use physics-based simulation (defined as conjugate CFD/FEA on systems together with manufacturing simulations, casting, costing, wear & degradation etc…) not just for the functional behaviour of a product but its economic, business behaviour. A successful engineering company in the 21st century will be one that harnesses the benefits of computer-based simulation.

"Digitalisation", Industry 4.0, the Digital Twin, Data-driven design & manufacturing are set to revolutionise the way we do business (Forbes [2017]). A Digital Twin is a virtual model of a process, product or service to accelerate design, develop new opportunities and plan for the future by using simulation. This merging of the digital and physical worlds, the Industrie 4.0 paradigm, is driven by Data collected at all stages over the life of a product, from concept to design to manufacture to service & monitoring of systems and on to retirement. All this Data fed back into the product development cycle. This Data will be analysed using Artificial Intelligence, AI, and will likely be distributed across parallel computer resource, probably the Cloud.

Figure 1 sketches a likely Gas Turbine Digital Twin ranging from temperature-entropy (T-s) cycle diagrams & blade velocity triangles through fully-featured, 3D design, manufacturing, service and Maintenance, Repair & Overhaul (MRO). There are a number of opportunities for a Digital Twin: “as-designed” vs “as-manufactured”; remote monitoring & abnormality detection; MRO, Maintenance, Repair & Overhaul.

1 AIAA Senior Member

American Institute of Aeronautics and Astronautics
Fig.1: A Digital Twin for a Gas Turbine power plant with data-driven feedback from manufacturing, service and MRO

The first opportunity for a Digital Twin is: “as-designed” vs “as-manufactured”. There will be discrepancies between the design intent, as expressed in the Manufacturing CAD (“MCAD”) due to: the manufacturing process; or assembly; or even the hot-cold-running transformation approximations. For example, Figure 2 shows the effect of manufacturing variability on the performance of HPT blades (Lee et al [2018]). SO, does this matter? Is a re-design or re-assembly required? This can be a very expensive decision…

Fig.2 Effect of manufacturing variability on the performance of HPT blades (Lee et al [2018])

The second opportunity for a Digital Twin is: remote monitoring & abnormality detection. In an installed Gas Turbine power plant, data is measured in real-time: fuel flow, some pressures & temperatures, rpm, vibration, etc…perhaps clearances but no geometry. There may be an abnormality or problem – with various potential causes - each with associated mitigations…Figure 3 shows typical in-service condition monitoring (from Meher-Homji et al [2002]) showing the changes in compressor efficiency and Heat Rate in a large gas turbine and a “fouling event”; (right) the Mahalanobis Distance (see https://blogs.sas.com/content/iml/2012/02/15/what-is-mahalanobis-distance.html) is used to judge whether a data departure is within the expected range or abnormal. SO, maybe use a Digital Twin run with many potential scenarios to generate a training Data Base for an AI (Artificial Intelligence) system which can then manage & interpret the real field data.
Fig. 3 Typical in-service condition monitoring (from Meher-Homji et al [2002]) showing the changes in compressor efficiency and Heat Rate in a large gas turbine and a “fouling event”; (right) the Mahalanobis Distance (see https://blogs.sas.com/content/iml/2012/02/15/what-is-mahalanobis-distance.html) is used to judge whether a data departure is within the expected range or abnormal.

The third opportunity for a Digital Twin is: **MRO, Maintenance, Repair & Overhaul.** Usually life is prioritised over performance (except in very competitive markets) as this delivers a higher return on investment for the operator. SO, using the actual observed state of the geometry, what needs to replaced? What still has useful life? What performance penalties might be expected? Figure 4 includes a gas turbine blade coated with volcanic ash deposits (from Dunn et al [1994]) – does it need to be removed and repaired or replaced?

Fig. 4. Typical in-service MRO issue - volcanic ash deposits on a HPT (from Dunn et al [1994]) – do the blades need to be removed and repaired or replaced?

However, despite the opportunity, there are a number of challenges to make a Digital Twin real and these are discussed in the following Sections:

- Scale of simulation;
- Scaling the simulation;
- Responding to data-driven feedback.

II. Challenges to make a Digital Twin real

A. Scale of Simulation

A Digital Twin will need to be able to represent & manage huge geometries over scales ranging from individual components like gas turbine blades through to assemblies and on to systems at the level of complete power plant. The next Figure, Fig. 5, shows an application example, a turbocharger installed under-hood in a car. The task is to develop
& improve a whole product, not just separate components individually – a systems-based approach. To set a sense of scale, overall simulation requirements are likely:

- **Very large meshes**: complete engine bay + component CHT mesh + external domain will be $+1 \text{Bn}$ cells or so
- “**Geometry editing**” = very quick and substantial geometry change, without affecting simulation process speed (e.g. “cut-paste” a complete new manifold design, maybe in real time)
- **Integrated tools** for simulation, not simply assembly of existing packages via “loose-coupling”
- **Data handling** (full parallelism) and visualisation to match size & ambition of simulation.

Fig.5: Trends in simulation from component to system-level design drive growing simulation scale and scope

This trend from component to system-level design drives growing simulation scale and scope as illustrated. In terms of mesh size, typical CFD solvers are in good shape and handle very large meshes via efficient parallel implementations. However, the CAD geometry kernel, mesh generation itself and (especially) FEA analyses are severely limited by their serial implementation effectively blocking useful application much beyond sub-assembly scale. Moreover, these are not the only bottlenecks inhibiting application of conventional simulation systems to a Digital Twin – the workflow itself must be considered.

B. Scaling the simulation

A Digital Twin is at core an integrated physics-based workflow combining a range of multi-disciplinary tools. A Digital Twin will need to be distributed across parallel computer resource, perhaps the Cloud, supporting huge, conjugate, aero-thermal-mechanical simulations on huge meshes. When the simulation scale becomes large, the amount of memory RAM to support the simulation becomes large – so, many computer cores are needed. With typical consumption of around 1GB per 1M mesh cells (for real-world practical unstructured meshes) a simulation of 1B cells needs 1000 cores – it is a simple as that. *The benefit of an HPC system is more in absolute job size rather than job speed.*

The key to exploiting the benefit offered by an HPC system is to understand scaling - for best efficiency care must be taken for the compute load to be much bigger than the communicate load - eventually as the number of cores increases communication dominates compute load and the speed up asymptotes as sketched in Figure 6. In addition,
Amdahl’s Law [1967] makes clear that any serial parts of the code will eventually dominate – and very savagely. For example, if 10% of the code is serial then the maximum speed up on any HPC is no more than factor 10! (The run time of the 90% parallel code is driven towards zero on a large core count machine but the residual serial code stays serial…) In the context of a Digital Twin, the key observation is that Amdahl’s law applies to the overall workflow consisting of CAD-to-mesh-to-simulation-to-visualisation-to-geometry edit etc. as illustrated below.

![Fig.6: Scaling an integrated process chain: Amdahl’s Law](image)

Accordingly, a useful Simulation Environment to support an integrated workflow, a Digital Twin, must be implemented end-to-end in parallel including the geometry kernel, mesh generator, close-coupled with simulation & post-processing combined with geometry editing & management to enable scripted, automated design and data-driven feedback from the through-life behaviour of the product. This observation is closely aligned with the NASA Vision 2030 study on the future of simulation & HPC (Slotnik et al [2014]).

C. Responding to data-driven feedback

The third, and perhaps most significant, challenge to be confronted to allow the creation of a useful Digital Twin is the need to respond in a physics-based way to Data-driven feedback derived from field data and in-service monitoring. Knowledge about wear, damage, degradation, etc. will not only need to be incorporated “upstream” into improved design & manufacturing but also “through-life” into assessing & managing, in a financially quantitative way, ongoing MRO (Maintenance, Repair & Overhaul) needs. This can only be done by responding, in the most general way, to geometry.

![Fig.7: Typical in-service degradation; a meaningful Digital Twin must be able to respond to this “Data-driven” feedback; (left) hot corrosion (Wing at al [1981]), (centre) deposition & erosion on a HPT NGV (Batalha [2012]); (right) rendered laser scan of a volcanic ash damaged HPT NGV (Bonilla [2012])](image)

To illustrate the scale of the challenge, Figure 7 shows typical in-service degradation in aero-engines. In the Figure on the left is hot corrosion (Wing at al [1981]), in the centre, deposition & erosion on a HPT NGV (Batalha [2012]) and on the right a rendered laser scan of a volcanic ash damaged HPT NGV (Bonilla [2012]). The particular HPT NGV shown in the centre had apparently been under observation via borescope and, despite its appearance, at the next
Shop Visit was declared within limits and sent for repair rather than being scrapped (the replacement cost is around $10-15k per blade (Batalha [2012])).

The repair-replace judgement – as well as the judgement that the blade was safe to continue flying – were made using experience and naturally in a conservative way. Aero-engine maintenance is very expensive: the typical cost of “performance recovery” at a Shop Visit is $1.5-2M per engine and the replacement cost of the several Life Limited Parts (HPT module, etc.) is in the range $400-600k each (Ackert [2011]). Given the extremely large costs involved and the current trend to bundle maintenance costs into a long term support package, there is huge scope for a much more physics-based approach.

A meaningful Digital Twin, therefore, must be able to respond to this “Data-driven” feedback. Knowledge of damage, degradation, etc. will need to be incorporated into improved design & manufacturing and into in-service monitoring & management. The only way forward is to replace judgement with physics-based simulation. And this can only be done via the geometry.

III. Geometry is the Digital Thread

It our firm contention that a Digital Twin for a complete GT power plant must be based on physics-based simulation and will need to be able to represent & manage huge geometries over scales ranging from individual components like gas turbine blades through to assemblies and on to systems at the level of complete power plant. The Digital Twin must encompass through-life economics modelling including MRO return for OEM & Operator ROI and the ability to respond to environmental & regulatory demands.

The key question is not the idea itself but rather:
• what would it take to make a Digital Twin real – what is the Digital Thread?

The standard response to the change of geometry due to wear or degradation is to morph the associated simulation mesh – see for example the work on ash deposition in turbine cooling holes reported by Forsyth et al [2017] or deposition on turbine blades reported by Casari et al [2017]. BUT to perform a component life analysis needs a conjugate, coupled aero-thermal-mechanical analysis – this needs a modified geometry.

Our contention is that Geometry is the Digital Thread. The role of Geometry is to support simulation; geometry must be available throughout the simulation process chain, in a form suited to CFD, FEA, etc… and be capable of being data-driven and so respond to manufacturing variability, in-service issues, etc….SO, the next question is: what sort of “geometry”? “Geometry” is generally thought of as classical NURBs-based BREP CAD. This approach is very widely used and embedded within industrial design and PLM systems but has two key drawbacks relative to the needs of the Digital Twin. Firstly, the approach is basically serial (in the sense it cannot be distributed over parallel compute cores); secondly, it responds inefficiently & slowly (and via human intervention if any inbuilt parameterisation cannot cope) to “data-driven feedback”. In short, BREP-NURBS is not created with enough degrees of freedom to accurately capture & reflect in-service, degraded geometry. Finally, in general, classical CAD is still not well aligned with the needs of automated mesh generation and hence not well suited to automated simulation workflows (see for example Gammon et al [2018]).

In terms of parallelism, Haimes & Dannenhoffer [2018], with their work on EGADSlite and EGADS/OpenCASCADe, have shown how an scalable, parallelisable geometry kernel can be constructed – but still based on classical trimmed BREP concepts. This potentially solves the scalability challenge, but not the ability to respond to data-driven feedback. We have been developing an alternate approach (Dawes et al [2018]) based on Digital Geometry which overcomes both of the drawbacks of standard BREP CAD; this will be described in the following Section.
IV. Digital Geometry

The famous Bresenham line algorithm (1962) was developed as a way of representing a line via discrete pixels – “rasterisation” on the newly emerging Cathode Ray Tube terminals. This is essentially the core idea in digital photography – a picture – in 3D this becomes geometry and pixels, voxels. Our Boxer software (see Dawes et al [2005-2018]) is built on Digital Geometry using generalised 3D versions of the fundamental Bresenham algorithm; Figure 8 illustrates this. This consists of an integer representation of geometry down to a chosen length scale – voxels which determine “spatial occupancy”: either occupied, vacant or cut. This is combined with a local Distance Field managed through Level-Set technology – to represent sub-voxel scale geometry. This “distance” is literally & simply the physical distance from the cell centres (or vertices) to the closest geometry and is just a scalar field variable, just like fluid density or pressure.

![Fig.8: The Digital Geometry Kernel in Boxer; on the left the 3D voxel image; on the right the Distance Field storing sub-voxel scale geometry information](image)

There are two key advantages of this approach:

- Digital Geometry can be distributed onto any cluster - enables true parallel scalability
- Geometry editing & management is supported in a very general, topology-independent way

Looking ahead at the Simulation System of the Future, geometry will need to be available throughout the process chain to support solution adaptive mesh refinement, Fluid Structure Interaction, and automated design optimization. The simulation sizes will be in the Billions of mesh cells, supporting conjugate analysis, and the process chain will have to be end-to-end parallel with no serial bottlenecks. Hence the geometry modeling itself must be capable of being implemented & scaling in parallel – this is trivial for our Digital Geometry kernel but very difficult to imagine with a kernel based on traditional NURBS-BREP constructs.

In the Digital Geometry world, editing & managing the geometry consists of modifying the Distance Field as illustrated in the Figure 9: shown on the left, simple Boolean operations; on the right morphing of one shape, “A”, to another, “B”.

In more detail, the Level-set Distance Field is defined by: \(\phi(x, t > 0) = \pm d \). It is easy to show (Adalsteinsson et al [1995]) that there is an associated evolution equation:

\[
\phi_t + F \cdot |\nabla \phi| = 0
\]

where \(F \) is the speed function – setting the rate (and also the extent & location) of changes to the Digital Geometry surface \(\phi=0 \). “Geometry edits” are just changes to this scalar field, defined somehow/anyhow via the function \(F \).
For example:

- standard Boolean operation is just $F = \min(\text{target_shape, tool_shape})$
- classical morphing operation (Breen & Whitacker [2001]) is just $F = (\phi_{\text{target}} - \phi_{\text{source}})$
- erosion/corrosion/burning/ablation is just $F = \text{volume(mass)}$ transfer to/from surface

This geometry framework provides a huge and as yet largely unexplored capability.

As a very simple illustration, Figure 10 shows stages in the simulation of erosion by sand of the surface of a sphere. The erosion simulation was performed using standard Fluent™ Discrete Particle Modelling (DPM) (see [www.ansys.com]) combined with classical erosion modelling (see for example Finnie et al [1992]). The erosion model takes the form:

$$ER = \sum_{\text{trajectories}} \frac{m_p C(d_p) f(a) v_p^n}{A_{\text{face}}}$$

where the erosion rate (ER) of the geometry face depends on the mass of impacting particles, an empirical function of the particle diameter, an empirical function of the impact angle and the particle velocity (with an empirical exponent). The predicted surface variation in erosion rate (m3/m2/s) is related directly to the Level-set morph Speed Function "F" (m/s) and is imported directly into Boxer and used to morph the Level Set Distance Field; in the Figure the zero distance ($\phi=0$) is rendered.

A new simulation mesh is then automatically generated for this new, morphed geometry – see Figure 11. This is a key novelty of our approach – we morph the geometry not the mesh.
Boxer is very robust and to generate a mesh for a geometry like this is straightforward; the exported mesh then drives, for example, the Fluent™ flow solver allowing the performance of the modified geometry to be predicted. Thereby, a scripted, automated "morph-mesh-solve" workflow can be created as sketched in Figure 12; it is this workflow which we believe is capable of supporting through-life simulations by coupling physics-based geometry degradation to predicted performance changes.

![Simulation mesh (surface shown) generated by Boxer for the eroded sphere generated from the morphed Level Set geometry](image)

Fig.11: Simulation mesh (surface shown) generated by Boxer for the eroded sphere generated from the morphed Level Set geometry

![The automated morph-mesh-solve workflow](image)

Fig.12: The automated morph-mesh-solve workflow

V. Example applications

A. Turbine blade in-service degradation; simulated erosion

This Section will show our first attempts at modelling blade degradation using physics-based simulation. We have chosen particulate erosion as this is one of the most severe mechanisms as discussed earlier. There are a number of approaches to particulate erosion modelling in the literature based on “dilute phase” (one-way coupling) Lagrangian particle tracking combined with an impact “bounce” or “stick” erosion model. As validation, there are a number of published cases: for example Tabakoff *et al* [1990], Hamed, Tabakoff *et al* [2005] or Graham *et al* [2009].
To illustrate typical capability, Figure 13 shows measured erosion by sand particles of an aluminium cylinder/endwall compared with a Fluent™ simulation (taken from Graham et al [2009]). The predicted surface erosion rate matches well with the observed erosion pattern. Accordingly, we use in this paper the basic DPM/erosion model available in Fluent™ (based on Finnie et al [1992]) and we have reproduced the results in Figure 13 to verify our approach. We have studied both the stator vanes and the downstream rotor blades in a stage; results are presented in the following Section for the vanes.

Fig.13: Measured erosion by sand particles of an aluminium cylinder/endwall compared with a Fluent™ simulation of surface erosion rate (taken from Graham et al [2009])

The stator blades are typical of those used in an aero-engine HPT stage. A standard unstructured mesh was generated by BOXERmesh and then exported to Fluent™ to produce the baseline solution with standard inlet & outlet boundary conditions. Then the DPM/erosion simulation was performed by Fluent™ injecting sand particles with a “Rosin-Rammler” distribution and specifying the sand mass flow rate / number of particles & the distribution of particle diameters as shown in the Table. The particles were injected in the same direction and with the same velocity as the bulk air flow. Quantitative data on particulates in aero-engine turbines is rarely available in the public domain; for this study the particle size & burden were selected based on the information in Hamed, Tabakoff et al [2005] and is representative of “runway sand”.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade inlet angle [°C]</td>
<td>0</td>
</tr>
<tr>
<td>Blade exit angle [°C]</td>
<td>70</td>
</tr>
<tr>
<td>Re [-]</td>
<td>0.5x10^6</td>
</tr>
<tr>
<td>Sand/air mass flow ratio [%]</td>
<td>0.21</td>
</tr>
<tr>
<td>Sand: min; mean; max diam.[μm]</td>
<td>60; 250; 1000</td>
</tr>
</tbody>
</table>

Table: Basic stator vane simulation parameters

Different particle sizes take different paths through the flow with small ones following the flow and larger ones having a more “ballistic” trajectory. Figure 14 illustrates this. An overview of the predicted surface erosion rates is shown in Figure 15. The particles in the simulation input are relatively large and their trajectories tend towards “ballistic” so the majority of the particle-blade impacts occur on the blade pressure side.

Notable in Figure 15 is the tendency for particles to collect in the pressure side/endwall corner and for their pathlines to roll up into a vortical structure (see zoom view in Figure 15). This leads to greatly increased local erosion rates compared to the general blade background level of around 0.5mm/10,000h; the predicted maximum erosion rate is around 2.3mm/10,000h. (10,000h is about half the Flight Hours expected before a Restoration Shop Visit.)
Fig. 14: Predicted trajectories of different sizes of particle: (left) 2 μm; (centre) 20 μm; (right) 200 μm

Fig. 15: Overview of predicted erosion rates in kg/m2s for the HPT stator vane; (zoom view) particle trajectories in the pressure side/endwall corner showing a vortical structure (view upstream from the blade trailing edge)
The next step in the *morph-mesh-solve* workflow is for the erosion rate to be imported into BOXERgeom and for the blade geometry to be morphed using the Speed Function “F” mapped onto the local erosion rate. Once the new geometry is generated it is exported to BOXERmesh and a new simulation mesh created and exported in turn to Fluent™. Figure 16 illustrates this simulation mesh (surface shown) for the eroded stator blade; particularly evident is the erosion pattern associated with the particulate vortical structure formed in the pressure side/endwall corner. It is important to emphasize that this is a body-fitted mesh generated for a degraded geometry — *not* a morphed mesh — and that classical BREP NURBS CAD would have difficulty in representing this degraded geometry.

![Figure 16: Simulation mesh (surface shown) for the eroded stator blade; particularly evident is the erosion pattern associated with the particulate vortical structure formed in the pressure side/endwall corner](image)

A new flow simulation is run using Fluent™ and the result is illustrated in the next Figure which shows total pressures plotted in a constant streamwise cut near the stator vane TE plane for both the pristine and eroded geometries. The differences are relatively small but nevertheless the extra loss generated by the pressure side/endwall erosion is detectable.

![Figure 17: Predicted total pressures near the vane TE for the pristine (left) and eroded (right) geometries](image)

To make this more quantitative, the Table shows the predicted loss coefficients for both pristine and eroded geometries together with an estimate of the impact of this on the Exhaust Gas Temperature (a key monitor of engine performance degradation) using the very simple analysis described in Dawes *et al* [2019] and for the nominal case of a by-pass turbofan engine at cruise (31,000ft, M=0.85, engine entry T_{02}=256K and cycle ratio T_{04}/T_{02}=6).
Table: Predicted loss coefficients and associated estimated changes in EGT for a nominal by-pass turbofan at cruise for the pristine & eroded geometries

As can be seen from this Table, the loss coefficient is significantly impacted during the simulated degradation event by the geometry changes. When imagined to be a blade in a by-pass turbofan at cruise, this increase in loss coefficient is estimated to cause a significant increase in EGT of 5.1 °C per 1000FC (1FC=2FH) – the magnitude compares well with Ackert [2011] who quotes 4-5°C per 1000FC.

This example has successfully demonstrated how physics-based simulation might be applied to estimate through-life performance changes associated with component geometry degradation.

B. In-service degradation: cooled turbine burn-through

The final example is the ambitious case of a simulated cooled turbine blade burn-through – representative of the more extreme geometric perturbation illustrated earlier in Figure 7. As in the previous example, the “pristine” blade geometry, Shape A, comes from manufacturing CAD; the “damaged” geometry, Shape B, is created as a Point Cloud to mimic observed cases. Then, as before, we use Level-set Digital Geometry capability to morph “pristine” to “damaged” geometries thereby modelling the time history of the degradation, automatically exporting simulation meshes from BOXERmesh for CFD at selected stages during the morph-mesh-solve workflow. Currently we have used the classic Breen-Whitaker morph; next, the morph (and associated speed function “F”) we intend to take from a physics-based aero-thermal-mechanical-material simulation. Figure 18 shows the geometry during stages of the simulated burn-through of the cooled turbine blade.

Fig.18: Stages during the simulated burn-through of the cooled turbine blade: geometry

Figure 19 shows a detail of the blade leading edge geometry and associated mesh in the later stages of the burn-through simulation. The geometry is by now very complex but both the Digital Geometry model and associated mesh generation are perfectly happy handling this: every mesh exported from Boxer solves straightforwardly in Fluent™. We stress again the near impossibility of supporting this simulation with either BREP-NURBS geometry modelling or mesh morphing.
Finally, Figure 20 shows flow simulation results at stages during the simulated burn-through of the cooled turbine blade. The progressive – and increasingly serious – degradation of the performance is clear. In terms of stage matching and coolant load: as the throat opens, there is more primary mass flow; as the coolant holes “burn” there is more coolant flow also (fixed pressure ratio boundary conditions).

Fig.20: Stages during the simulated burn-through of the cooled turbine blade: flow simulation

VI. Concluding remarks

This paper has described a Gas Turbine Digital Twin and argued that its heart should be an integrated, physics-based simulation workflow (conjugate aero-thermal-mechanical plus manufacturing, erosion & corrosion, wear & degradation, cost & through-life economics).

Three key challenges were identified: scale of simulation; scaling the simulation; and responding to Data-driven feedback. Successfully confronting these challenges is needed to make the Digital Twin real.
The paper then argued that Geometry is the Digital Thread needed to make the Digital Twin real – and that a Digital Geometry model offers advantages over the classical BREP-NURBS CAD approach. Some examples were given to illustrate the benefits of the proposed Digital approach.

As a final illustration, Figure 21 shows our perspective on geometry through the stages in the life of a product.

![Diagram showing geometry representation through life stages](image)

Fig.21: Geometry through the life of a product

Acknowledgements

We are very pleased to acknowledge partial financial support from Innovate UK via the GHandI, GEMinIDS and AuGMENT Consortia and also from our Development Partners. The authors are grateful to Cambridge Flow Solutions Ltd. for permission to publish this paper.

References

Amdahl GM “Validity of the single processor approach to achieving large-scale computing capabilities” AFIPS Conference Proceedings (30): 483-485, 1967

Bonilla CH “The effect of film cooling on nozzle guide vane ash deposition” MSc Thesis, Ohio State University (Mike Dunn), 2012

www.nondot.org/sabre/Mirrored/_/gpbh35.pdf Chapter 35: Bresenham is Fast and Fast is Good

Casari N, Pinelli M, Suman M, Montomoli F & di Mare L “EBFOG: deposition, erosion and detachment on high pressure turbine vanes” ASME Paper GT2017-64526, Charlotte NC, 2017

Demargne AAJ, Evans ROE, Tiller PJ & Dawes WN “ Practical and Reliable Mesh Generation for Complex, Real-world Geometries” AIAA-2014_0199

Finnie I, Stevick GR & Ridgeley JR “The influence of impingement angle on the erosion of ductile metals by angular abrasive particles” Wear, 152, pp91-98, 1992

Forsyth P, Gillespie DRH & McGilvray M “Development and application of a coupled particle deposition dynamic mesh morphing approach for the numerical simulation of gas turbine flows” ASME Paper GT2017-63295, Charlotte NC, June 2017

Lee WY, Dawes WN, Coull JD & Goenaga F, “The impact of manufacturing variability on high pressure turbine profile loss” AIAA SciTech, Kissimmee, 8-12 January 2018

https://blogs.sas.com/content/iml/2012/02/15/what-is-mahalanobis-distance.html

Slotnick J et al “CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences” NASA/CR-2014-218178

-oOo-