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0 ABSTRACT 
     

The overall aim of our research is to enable overnight high 

fidelity LES for realistic industry problems on affordable 

computing resource. We have adopted a “3E” approach: high 

spatial discretization Efficiency on general unstructured meshes, 

high Efficiency accurate time integration and high computing 

Efficiency on modern low cost HPC hardware. Our approach is 

centered on high order Flux Reconstruction with local time 

stepping – the STEFR algorithm [1]. In this paper, an offload-

mode version of this code is described targeted at a 

heterogeneous many-core computing system based on low cost 

commodity hardware - Intel PHI cards. Three key techniques are 

introduced to achieve high FLOP rates - and optimal usage of 

non-equilibrium memory of both CPU and the many core co-

processor - with three levels of parallelization, multi-level non-

equilibrium mesh partition and an asynchronous computing 

structure. A series of high order LES runs for a high lift low 

pressure turbine blade and a transonic turbine blade, with 

different order of accuracy, both fully wall-resolved and wall-

modelled, were performed, analyzed and presented. This work 

demonstrates that the high order STEFR method has the potential 

to support over-night LES for realistic industrial problems on 

affordable computing resource. 

 
1 INTRODUCTION 

 

One of the most important requirements from industry for 

the next generation of CFD software is the ability to provide 

affordable high fidelity results and analysis for large scale, real 

geometry problems. For a non-linear system such as the Navier-

Stokes equations, any under-resolved high frequency parts of the 

flow commonly lead to aliasing errors in the lower frequency 

parts which are of more interest in terms of industrial 

performance assessment. The more complex the flowfield, the 

more difficult it is for proper modelling of the high frequency 

part of the flow, and the easier it is to cause both inaccuracy and 

even instability in simulations. High fidelity simulations which 

attempt to resolve the higher frequency part (ie. the smaller 

turbulent scales) of the flowfield, are increasingly Large Eddy 

Simulations (LES) or even Direct Numerical Simulation (DNS). 

Both provide more general ability to handle turbulence without 

modelling and, for both, higher order methods are more efficient 

at correctly representing the wider energy spectrum resolved.  

 

As part of our research we introduced the STEFR method 

[1] which supports high order accuracy with both space and time 

discretization on arbitrary, general unstructured meshes. In 

particular, time-accurate local time-stepping was enabled by 

using a very efficient predictor-corrector type time integration 

method. The approach was demonstrated [2] to be 10~100 times 

faster for realistic simulations as compared to conventional 

uniform time-stepping methods – and the wider the range of 

scales to the geometry, the more complex the physical problem, 

the higher this “speed up ratio” becomes.  

 

Nevertheless, LES is still too time-consuming and still relies 

on expensive HPC devices and, even on very large modern 

clusters, the complexity and the range of geometry scales of 

industrial problems which can be handled routinely by LES are 

still very limited compared to commonly used RANS solvers [3]. 

This inhibits the ability of the higher fidelity resolution of flow 

mechanisms enabled high order LES to benefit industry designs. 

In order to reduce still further the cost of LES, this paper 

introduces the implementation of the STEFR method on a multi-

node many-core computing system consisting of CPUs and Intel 

PHI coprocessors. This system is built from low cost, commodity 

hardware and has low running costs. In particular, we built an 8 

node heterogeneous computing system, each node has 2 Intel 

Xeon CPUs, each has 8 physical cores each with 6 many-core 

Intel PHI cards each of which in turn has 57 physical cores. 
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The biggest challenge of this research, is the uniform time-

marching process at the heart of STEFR during which each cell 

has an adaptive local time step. This brings difficulties for load 

balancing the irregular data-communications. A three level 

parallel data communication model was constructed, with a 

multi-constraint, multi-level non-equilibrium mesh partition, to 

make maximum use of both the higher computing ability of Intel 

PHI coprocessor and the larger on-site memory of CPUs.  

 

This paper is structured as follows. First, the basic numerical 

formulation is reviewed, including high order space and time 

discretizations. Next, the construction of “offload” mode code is 

presented with three key novel techniques. A series of high order 

LES runs for a high lift low pressure turbine blade and a 

transonic turbine blade were performed to test and compare 

different choices: third order versus fourth order, wall resolved 

versus wall modelled, different mesh densities, zero turbulent 

density inlet versus synthetic fluctuated turbulent inlet. Statistics 

for computational cost and memory consumption for each 

simulation are listed; some analysis of the observed flow will be 

presented as well. The motivation in this paper is not only to 

provide some validation evidence for the functional performance 

of the present STEFR method but also to extract data on the 

computational efficiency on our novel hardware architecture. 

 

2 NUMERICAL METHOD 
 

2.1 FLUX RECONSTRUCTION DISCRETISATION 
 

The Flux Reconstruction (FR) approach was originally 

proposed by Huynh [3] for 1D conservation laws. Wang and Gao 

[4] extended the idea to simplex meshes for Euler equations and 

further for Navier-Stokes equations [5]. These approaches are 

summarized by the Correction Procedure via Reconstruction 

(CPR) method of Haga, Gao and Wang [6]. An infinite range of 

high-order energy stable flux reconstruction schemes were 

developed by Vincent, Castonguay and Jameson [7]. The FR 

approach is simple, flexible and very efficient thanks to its 

differential form without any numerical integration (quadrature), 

and it has proved it is capable of higher efficiency than other high 

order schemes (for example [8] & [9]).   

 

    In FR discretization, all elements are transformed from the 

physical domain (𝑥, 𝑦, 𝑧) to a local domain (𝜉, 𝜂, 𝜁). Following 

the coordinates transformation, we define (with J the Jacobian): 

 

                  �̂� = |𝐽|𝑈              (1) 
       

   𝐹𝜉 = |𝐽|(𝜉
𝑥
𝐹𝑥 + 𝜉

𝑦
𝐹𝑦 + 𝜉

𝑧
𝐹𝑧)  

   𝐹𝜂 = |𝐽|(𝜂
𝑥
𝐹𝑥 + 𝜂

𝑦
𝐹𝑦 + 𝜂

𝑧
𝐹𝑧)      (2)                                     

   𝐹𝜁 = |𝐽|(𝜁
𝑥
𝐹𝑥 + 𝜁

𝑥
𝐹𝑥 + 𝜁

𝑥
𝐹𝑥) 

  

The governing Navier-Stokes equations re-cast in local 

domain coordinates become: 

 

     
𝜕�̂�

𝜕𝑡
+ 𝛻𝜉 ⋅  �⃗�𝜉 =

𝜕�̂�

𝜕𝑡
+

𝜕𝐹𝜉

𝜕𝜉
+

𝜕𝐹𝜂

𝜕𝜂
+

𝜕𝐹𝜁

𝜕𝜁
 =  0  (3)                               

 

When discretized on an arbitrary, unstructured mesh with non-

overlapping elements, the 𝑗 −th solution points of the 𝑖 − th 

element lead to the uniform FR formulation for all different types 

of elements as: 

 
𝜕�̂�𝑖,𝑗

𝜕𝑡
+ (𝛻𝜉 ⋅  �⃗�𝜉(𝑈𝑖))

𝑖,𝑗
              +

              ∑ ∑ 𝜶𝑗,𝑠,𝑚(�̃�𝜉|𝑛 −   �̅�𝜉|𝑛 )𝑖,𝑠,𝑚
𝐾𝑠
𝑚=1

𝑁𝑠
𝑠=1   = 0                                

            (4) 

where 𝑁𝑠 is the number of faces for the element and 𝐾𝑠 equals 

number of flux points on the face. �̃�𝜉 , �̃�𝜂  and �̃�𝜁denote the 

common flux which takes the form of Riemann fluxes for the 

inviscid flux and central averaged values for viscous part. In 

particular, the difference between the common flux and the outer 

normal projection of the local flux(�̃�𝜉|𝑛 − �̅�𝜉|𝑛), is called the 

“correction flux”, the same as in the 1D FR formulation, and 

which is used to update the DOFs by exchanging information 

with  adjacent elements. The FR coefficients 𝜶  can be 

obtained through the “lift operation” [4] for the standard element 

types - the detail operations can be found in [8].  

  
 

2.2 SPACE TIME EXTENSION 
 

 Inspired by the Continuous Extension Runge-Kutta (CERK) 

approach for high order discontinuous method, introduced by 

Gassner et al [10], a “predictor-corrector” type space-time 

extension for high order FR (which we call STEFR) was devised, 

which uses the “flux divergence” part to construct the local 

predictor by using the continuous Runge-Kutta method [11], and 

then the “correction flux” part of the FR discretization is used as 

the corrector. In the original FR formulation, the flux divergence 

represents the major part of the compute workload and is 

completely local to the elements, whereas the linear combination 

of correction flux parts, which takes adjacent elements into 

account, is used for updating the degree of freedoms (DOFs). 

The STEFR method combines these two parts smoothly by using 

staggered operations which are simple, efficient, accurate for 

both space discretization and time-marching and permit local 

time-stepping.  

 

 We rewrite Equation (4) as the following “unified” form: 

       

  
𝜕𝑈𝑖,𝑗

𝜕𝑡
= 𝐑𝑖,𝑗

𝐷 (𝑈𝑖) + ∑ 𝐑𝑖,𝑗,𝑠
𝐶 (𝑈𝑖 , 𝑈𝑖,𝑠

𝑛𝑏)
𝑁𝑠
𝑠=1  

 

with 𝐑𝐷 and  𝐑𝐶 given as: 

   𝐑𝒊,𝒋
𝐷 = −

1

|𝐽|𝑖,𝑗
(𝛻𝜉 ⋅  �⃗⃗⃗�

𝜉
(𝑈𝑖))

𝑖,𝑗

,          

 𝐑𝑖,𝑗,𝑠
𝐶 = − 

1

|𝐽|𝑖,𝑗
 ∑ ∑ 𝛼𝑗,𝑠,𝑚(�̃�

𝜉
|𝑛 − �̅�

𝜉
|𝑛 )𝑖,𝑠,𝑚

𝐾𝑠
𝑚=1

𝑁𝑠
𝑠=1                     

            (8) 

Integrating Equation (8) over time step interval 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] 
one obtains: 

 

𝑈𝑖,𝑗
𝑛+1 − 𝑈𝑖,𝑗

𝑛 = ∫ 𝐑𝑖,𝑗
𝐷 (𝑈𝑖) + ∑ 𝐑𝑖,𝑗,𝑠

𝐶 (𝑈𝑖 , 𝑈𝑖,𝑠
𝑛𝑏)

𝑁𝑠
𝑠=1

𝑡𝑛+1

𝑡𝑛  𝑑𝑡                                       

                   (9) 
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Inspired by the space-time extension of DG(STEDG) [10], we 

now construct a local space-time approximation 𝑣 =
𝑣(�⃗�𝑖 , 𝑡) for 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1]  by solving the following time-

dependent ODE: 

       

 
𝑑𝑣𝑖,𝑗

𝑑𝑡
= 𝐑𝑖,𝑗

𝐷 (𝑡, 𝑣(�⃗�𝑖 , 𝑡)),        𝑣(�⃗�𝑖 , 𝑡 = 0) = 𝑈𝑖
𝑛(�⃗�𝑖)                                               

           (10) 

From Equations (7) and (8) it can be seen that 𝐑𝐷 is completely 

local, which indicates the time evolution of 𝑣 = 𝑣(�⃗�𝑖 , 𝑡) is local 

also. The continuous Runge-Kutta method [11] is adopted to 

solve Equation (10) using the following procedure as: 

𝑣𝑖,𝑗(𝜏) = 𝑈𝑖,𝑗
𝑛 + Δ𝑡 ∑ 𝐵𝑙

̇ (𝜏)

𝑁𝑡

𝑙=1

𝐻𝑙
̇   

𝐵𝑙
̇ (𝜏) = ∑ 𝑏𝑙,𝑚

𝑂𝑡

𝑚=1

𝜏𝑚 

𝐻𝑙
̇ = 𝐑𝑖,𝑗

𝐷 (𝑣𝑖
𝑙) 

        

 𝑣𝑖,𝑗
𝑙 = 𝑈𝑖,𝑗

𝑛 + Δ𝑡 ∑ 𝑎𝑙,𝑛�̇�𝑙−1
𝑙
𝑛=1                                                                 

           (11) 

where 𝜏 ∈ [0,1] is the non-dimensional time, Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛, 

𝑂𝑡 is the order of time integration and 𝑁𝑡 is the related number 

of stages and the coefficients 𝒂 and 𝒃 are given by Owren and 

Zennaro [9]. Integrating Equation (10) for 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1], one 

obtains 

        

  ∫ 𝐑𝑖,𝑗
𝐷 (𝑣𝑖

𝑙)
𝒕𝒏+𝟏

𝒕𝒏 dt = v𝑖,𝑗(𝜏 = 1) − 𝑈𝑖,𝑗
𝑛                                                     

           (12) 

Taking the space-time polynomial 𝑣 = 𝑣(�⃗�𝑖 , 𝑡)  as a local 

predictor, and the combination of correction flux 𝐑𝐶  as 

corrector, substituting Equation (12) into Equation (9) results in 

the final step of the space time extension of the Flux 

Reconstruction (STEFR) scheme as: 

 

 𝑈𝑖,𝑗
𝑛+1 = v𝑖,𝑗(𝜏𝑚𝑎𝑥) + Δ𝑡 ∫ ∑ 𝐑𝑖,𝑗,𝑠

𝐶 (𝑣𝑖(𝜏), 𝑣𝑖,𝑠
𝑛𝑏(𝜏𝑛𝑏))𝑑𝜏

𝑁𝑠
𝑠=1

1

0
                                                  

          (13) 

where 𝜏𝑛𝑏  indicates the non-dimensional time for adjacent 

element with the same physical time.  

 

2.3 EFFICIENT PARALLEL IMPLEMENTATION 
  

 Central to the efficiency of the STEFR method is that all 

elements are allowed to use their maximum allowed local time-

step - which is itself adaptive during the simulations. This 

irregular time-stepping brings a lot of challenges for the time 

integration in maintaining physical time synchronicity - 

especially on parallel computing systems. This section focus on 

application of STEFR and its parallel implementation – targeted 

particularly at the emerging many core hardware platforms.  

 

 For the convenience of data exchange on element interfaces 

which is used for time integration of correction fluxes, the actual 

time-steps for all elements are set as powers of 2 with respect to 

the global smallest time-step. To illustrate this Figure 1 presents 

snapshots of a transient prediction during a global synchronous 

time step for a typical 3D simulation - which in this example has 

176 inner iterations in total. Compared to the more commonly 

used uniform step time marching methods, this approach needs 

to spend more effort in setting up getting executable queues and 

asynchronous parallel communications.  

 

   
(𝑎) 𝑖𝑖𝑡𝑒𝑟 = 1                (b) 𝑖𝑖𝑡𝑒𝑟 = 11           

 

  
      (𝑐) 𝑖𝑖𝑡𝑒𝑟 = 21              (𝑐) 𝑖𝑖𝑡𝑒𝑟 = 31     

                        

  
               (𝑒) 𝑖𝑖𝑡𝑒𝑟 = 41                           (𝑓) 𝑖𝑖𝑡𝑒𝑟 = 51    
                         

  
          (𝑔) 𝑖𝑖𝑡𝑒𝑟 = 61                            (ℎ)𝑖𝑖𝑡𝑒𝑟 = 176 

 

Figure 1. Snapshots time marching of one step: horizontal is 

element index and vertical is normalized prediction time 

 

 Therefore, the key to successful application of the STEFR 

method is minimizing the parallel communications. For the 

heterogeneous computing architecture adopted in this work (and 

discussed in the next Section) we use OpenMP for multi-

threaded parallel looping inside of each shared memory 

computing unit, whereas the communications between different 

computing units are undertaken by MPI. For most simulations 

on different computing systems, the fraction of wall-clock time 
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for effective functional evolutions is over 70% of the 

computational resource for most cases, including the correction 

flux calculations, predictions and corrections. The efficient 

implementation of STEFR using local time-stepping is much 

more complex than other explicit methods using uniform time-

stepping, such as explicit Runge-Kutta methods - however, the 

algorithm presented in this section has proved very efficient - 

even for large scale simulations, with more than 2 billion DOFs, 

and speed up ratios up to ~100 as compared to using global 

uniform time-stepping have been achieved [2]. 

 

 
2.4 OFFLOAD MODE IMPLEMENTATION 

 

The theme of this paper is “3E”: high spatial discretization 

Efficiency on general unstructured meshes, high Efficiency 

accurate time integration and high computing Efficiency on 

modern low cost HPC hardware. The previous Sections have 

discussed the first of these two efficiencies – this Section looks 

at a rather novel hardware architecture. 

 

Many-core computing systems are widely used and have 

progressed rapidly in recent years because of its high cost- 

effectiveness compared to pure, “traditional” multi-core CPU 

computing system in the HPC area. These computing systems 

are based on different many-core units including NVIDIA Tesla 

GPUs, AMD GPUs and Intel PHI co-processors. As is clear from 

the numerical review of the STEFR method earlier, its time 

marching method is not uniform and the data-communication is 

irregular. Also, for some computing loops of a single time 

marching step, the number of executive elements is maybe quite 

small especially in the final stage of inner iterative as shown in 

Figure 1(e)~ Figure 1(g). Therefore, several available many-core 

units have physical computing threads which are not suitable for 

STEFR method, such as NVIDIA Tesla GPUs and AMD GPUs. 

As reported in this paper, the Intel PHI co-processors have been 

chosen to build our heterogeneous computing system in order to 

trade fewer computing cores against each physical core having 

much stronger computing ability. 

 

To support this work we built a heterogeneous many-core 

computing system consisting of 8 nodes, each node has 2 Intel 

Xeon CPUs each with 8 physical cores and 6 many-core Intel 

PHI cards each with in turn 57 physical cores. All components 

are commodity items, easily and cheaply available. The system 

architecture is illustrated in Figure 2. This type of system holds 

out great promise going forward for a step change reduction in 

hardware costs – and hence, if the system can be driven 

efficiently, a step change reduction in LES solution time scales 

and cost. 

 

There are three different types of data-communication used 

in the computing system as shown in Figure 3: CPUs to CPUs, 

PHI co-processors and CPUs, internal data-communications 

between PHI co-processors/CPUs. Due to the irregular time 

marching process, the principle behind the design of the data-

communication model is to reduce the usage of distributed 

memory, and make use of more communication latency. As 

shown in Figure 3, asynchronous MPI is used for communication 

between CPUs though Infiniband (which has already 

demonstrated its high efficiency [1][2]).The data-transfer 

performance for small packages of data between host CPUs and 

PHI cards using Intel MPI is very poor even using OFED, 

therefore the “offload mode” [12] code was written which has 

mirror memory on host CPUs of all data-structures allocated on 

PHI co-processors and which speeds up the data transfer process. 

For each of the many-cores on host CPUs of each node, and on 

each PHI coprocessor, all executive loops are performed on 

shared-memory by using OpenMP’s multi-threading method. In 

order to reduce small package data-communication, the “offload 

mode” data transfer is synchronous between CPUs and PHI 

coprocessors, there is no communication between different PHI 

coprocessors and between PHI co-processors and CPUs on other 

nodes by using smart partitioning. 

 

 
 

Figure 2. Intel PHI based system architecture 
 

 
 

Figure 3. Three level data-communication model  

 

Another challenge for modern many-core computing units 

is the limited memory (8GB per PHI coprocessor) compared to 

CPUs (128GB per node). From the numerical scheme review in 

Section 1.2, in the STEFR method, the computational cost for 

single cell depends on its smallest size (and associated time limit) 

- however, the memory consumption still scales with the element 

number. So, in this work, a special multi-level, multi-constraint 

smart partitioning algorithm was written, to automatically 
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allocate more small size elements to PHI co-processors 

(typically near wall boundary layer elements) and put more 

elements on the CPUs to maintain load balancing and reduce 

data-communication size.                

 

 

3 VALIDATION ON TWO STANDARD TURBINE TEST 
CASES  

 

This Section will detail a series of LES runs performed on 

two well-known, standard turbine test cases and report the levels 

of software & hardware efficiency we were able to achieve in 

pursuit of our 3E goal. 

 

 

3.1 LOW PRESSURE TURBINE BLADE T106A 
 

This classic test case concerns the transitional and separated 

flow on the so-called T106A high-lift subsonic turbine cascade. 

A typical domain and mesh is shown in Figure 4 - all the high 

order hybrid unstructured meshes used in this paper were 

generated by BOXERMesh [2]. 

 

The Reynolds number is set equal to 1.1 × 105 based on 

the inlet velocity and the axial blade chord 𝐶. The inlet Mach 

number is equal to 0.1. The spanwise length of the domain 𝐿𝑧 =
0.075𝐶, this is regarded as sufficient to capture the main flow 

structures. 

 

A series of LES runs were performed, with different solution 

orders of accuracy, both fully wall-resolved & wall-modelled, 

and with both turbulent inlet and zero turbulence intensity inlet 

boundary conditions; the Appendix summarizes all the runs. The 

motivation in this paper is partly to provide some validation 

evidence for the functional performance of the present STEFR 

method and also to extract data on the computational efficiency 

on our novel hardware architecture. Hence, only representative 

results will be shown here and discussed. In the Appendix “Tp” 

denotes the characteristic flow-past time scale – to gather reliable 

statistics the LES must cover several of these scales.   

 

Near-wall modelling is very important for this type of 

simulation and two approaches were used: “fully wall-resolved” 

with very fine near-wall mesh spacing and a simple van Driest 

damping factor for the sub-grid model; and “wall-modelled” 

following the approach of Moin et al [15] based on a local 

solution of wall-normal equations derived from the Navier-

Stokes equations (in other words a rather sophisticated “law of 

the wall” sensitive to local pressure gradient). 

 

Turning to the results, first, Figures 5a & b show time-

averaged and transient Mach number for Case T106A-1. This 

case is 3rd order accurate, and wall-resolved with near wall Y+ ~ 

3. The “speed up ratio” derived from the SREFR local time 

stepping algorithm is a factor of ~7 compared to the classical 

uniform constant time step approach. Figure 4c shows iso-

surfaces of Q-criterion for transient result. 

 

 
 

Figure 4. A typical mesh for the T106 test case. 

 

 
Figure 5a. Time average Mach number for Case T106A-1 

 

 
Figure 5b. Transient Mach number for Case T106A-1 

 

 
 

Figure 5c. ISO-Surface of Q-criterion(Q=50000) for 

transient result, colored by Mach number 
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The predicted turbulence spectrum within the blade wake is 

presented in Figure 6 showing that the present LES resolves the 

flow well into the inertial range and agrees well with the 

expected “-5/3 law”.   

 

 
 

Figure 6. Power spectral density of total velocity within the 

blade wake (x=0.172, y=0.05655), case T106A-4 

 

 

  
(a) x/C~0.83, average        (b) x/C~0.83, transient 

  
(c) x/C~0.88, average          (d) x/C~0.88, transient 

  
(e) x/C~0.92, average          (f) x/C~0.92, transient 

 

Figure 7. Comparisons of streamlines around the 

transitional/separation zone for both the time-averaged flow 

and a transient snapshot; Case T106A-4 

The flow features laminar separation around x/C ~ 0.88 and 

a relatively slow natural transition. Figure 7 shows comparisons 

of streamlines around the transitional/separation zone for both 

the time-averaged flow and a transient snapshot. These results 

were extracted from Case T106A-4. This case is 4th order 

accurate, and wall-resolved with near wall Y+ ~ 5. The “speed up 

ratio” derived from our SREFR local time stepping algorithm is 

a factor of ~8 compared to a classical uniform constant tine step 

approach. Comparisons of velocity vectors around the 

transitional/separation zone for both the time-averaged flow and 

a transient snapshot are shown in Figure 8 – again for case 

T106A-4. A separation bubble can be seen to have formed by 

about x/C~0.92 (a little later than in the experiments). What is 

interesting is that the spatial scale of the disturbance & reversed 

flow occupies a much larger wall-normal extent than the time-

averaged wall-normal bubble scale.  

 

Figure 9 compares measured and predicted blade suction 

side skin friction for Cases T106A-1 (3rd order accurate, wall-

resolved with near wall Y+ ~ 3) and T106A-4 (4th order accurate, 

and wall-resolved with near wall Y+ ~ 5). The comparisons, 

especially for the 4th order accurate simulation are very 

encouraging. 

 

  
(a) x/C~0.83, average        (b) x/C~0.83, transient 

  
(c) x/C~0.88, average          (d) x/C~0.88, transient 

 

  
(e) x/C~0.92, average          (f) x/C~0.92, transient 

 

Figure 8. Comparisons of velocity vector around the 

transitional/separation zone for both the time-averaged flow 

and a transient snapshot; case T106A-4 
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Figure 9. Measured and predicted blade suction side skin 

friction for Cases T106A-1 (3rd order accurate, wall-

resolved with near wall Y+ ~ 3) and T106A-4 (4th order 

accurate, and wall-resolved with near wall Y+ ~ 5) 

 

The next set of comparisons is shown in Figure 8 – measured 

and predicted wall-normal RMS velocity profiles using data 

from Case T106A-4. Again, the comparisons are very 

encouraging although the transition is evidently a little over 

predicted but is fully complete by x/C~0.92.  

 

As a test, one LES run, T106A-11, was performed with an 

inlet turbulence intensity of 3.8%, using an isotropic fluctuations 

inlet boundary condition [17] in which synthesized perturbations 

in the three velocity components at inlet are set up using a sum 

of discrete waves. The simulation was wall-resolved, 4th order 

accurate and had near-wall Y+~5. However, comparing mean 

velocity profiles around the transitional region with Cases 

T106A-4 and T106A-5, which had exactly the same mesh but 

only different inlet turbulence, there was nearly no observed 

effect of the inlet turbulence within the near-wall region (the 

laminar sublayer) and only very small differences at the start of 

transition point and the re-attached region. In the simulations the 

rather small turbulence intensity has no obvious effect on 

transition for this case.  

 

Finally, in terms of computer resource, most cases were run 

on just one of the eight nodes on our Intel PHI cluster, Cases 1 

and 4 needed wall-clock times of ~32 and ~45 hours per 

characteristic flow-past time scale, Tp. To demonstrate our 

progress towards our ultimate goal of overnight turn around 

Appendix A also shows Case T106A-6 run on four nodes (half 

the capacity of our low cost machine) needing only ~22 wall-

clock hours per time scale. 

 

 

 
(a) x/C=0.83 

 

 

 
(b) x/C=0.88 

 
(c) x/C=0.92 

 

Figure 10. RMS velocity profiles around the 

transitional/separation zone; measurements and predictions 

using data from Case T106A-4 (4th order accurate, and 

wall-resolved with near wall Y+ ~ 5) 
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3.2 TRANSONIC TURBINE BLADE 
 

The computational domain & unstructured mesh for the 

next test case, the VKI-LS59 blade, is presented in Figure 11. 

The exit Reynolds number is 8.5 × 105 with exit Mach number 

0.95 [18] meaning that shockwaves are present in the blade-

blade flow (in contrast to the T106 case). In the LES, the extent 

of the spanwise domain is set to about 4.2% of the chord length. 

This is judged to be enough to capture the 3D structure scales. 

All results are based on statistics and analysis taken from the 

simulation with flow physical time > 10Tp. Three simulations 

were performed in this work, details of the runs are listed in Table 

2 of Appendix A.  

 

 
 

Figure 11. 3D hybrid unstructured mesh for VKI-LS59 

blade 

 

 
 

 

Figure 12. Iso-surface of Q-criterion(Q=50000) for a 

snapshot of a transient result for Case VKI-LS59-2, colored 

by Mach number. 

 

 

 

 
 

Figure 13. Instantaneous Mach number for case VKI-LS59-

1 (wall-resolved LES) 

 

 
 

Figure 14. Schlieren picture for the VKI-LS59 [18] 
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To get an overview of the results, Figure 12 shows iso-

surfaces of Q-criterion for a snapshot of a transient result for 

Case VKI-LS59-2 (wall-resolved). Compared to the previous 

shock-free T106 flow, Figure 5c, there is a much stronger 

vortical motion downstream of the trailing edge. This is even 

clearer in Figure 13 which shows a snapshot of instantaneous 

Mach number. This more than just a simple von Karman vortex 

street from the blade trailing edge – the suction & pressure side 

boundary layers separate at the trailing edge and form shear 

layers which couple into an unsteady shock motion producing a 

very strong vortical motion in the wake. This will elevate the 

blade loss coefficient above expected steady flow levels. The 

experimental Schlieren [18] in Figure 14 tends to corroborates 

the LES. Figure. 15 presents the Power Spectral Density of the 

total velocity within the wake. As before the present LES 

resolves the flow well into the inertial sub-range.  

 

 
 

Figure 15. Power spectral density of total velocity within the 

wake (x=0.0855, y=0.0139), case VKI-LS59-2 

 

The next set of figures, Figure 16, shows time-averaged 

blade-to-blade Mach number for each of Cases VKI-LS59-1, 2 

& 3. Each case was run 3rd order accurate, Cases 1 & 2 were 

wall-resolved with near-wall Y+ values of ~1.5 and ~3 

respectively; Case 3 was wall-modelled with Y+~30. Figure 17 

shows comparison of blade surface isentropic Mach number 

between experiment and time-average LES results. The mesh 

densities in Case 2 (refined wall-resolved) and Case3 (wall-

modelled) are very similar differing only in the Y+ value for the 

first boundary layer mesh (~3 and ~30 respectively) – and both 

have very much smaller values of near-wall X+ and Z+ (both ~15) 

compared to the baseline wall-resolved Case 1 (X+ and Z+ both 

~106).  

 

It can be seen comparing Figures 16a, b & c that the much 

finer streamwise & spanwise mesh resolution predicts a time-

averaged position of the strong shock downstream of the trailing 

edge which is distinctively closer in location and angle compared 

to the experimental Schlieren in Figure 14. This observation is 

true also for the passage shock – best observed via the time-

averaged isentropic blade surface Mach numbers in Figure 17. 

The refined wall-resolved and wall-modelled runs, Cases 2 & 3, 

predict much better the pressure distribution through the passage 

shock around X/C~0.55 on the suction side than in the baseline 

Case 1. Clearly, strict control of X+ and Z+ as well as Y+ is needed 

for accurate predictions – obviously, adequate resolution of the 

boundary layer and the interaction with the shock is critical for 

accurate prediction of flows of this type. 

 

 
Figure 16a. Average Mach number for Case VKI-LS59-1 

 

Figure 16b. Average Mach number for Case VKI-LS59-2 

 

 
Figure 16c. Average Mach number for Case VKI-LS59-3 
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Figure 17. Comparison of isentropic blade surface Mach 

number between experiment and time-average LES results 

 

Nevertheless the second weak passage shock observed in the 

measurements (see Figure 12) is not predicted in any of the three 

simulations. There could be two possible reasons: the first might 

be an artifact of differences between the time-averaging method 

used in the numerical simulations and the unknown averaging 

implicit in the experiment data. The second might be inferred 

from the comparison of Cases VKI-LS59-2 and VKI-LS59-3 - 

the wall-modelled LES predicted the main passage shock 

slightly better, which might indicate inadequate performance of 

the piecewise integrated method [2] used in STEFR to predict 

moving shocks inside the boundary layer. This shock capturing 

method is derived from 1D analysis directly applied as if to 

isentropic cells but likely needing adjustment for high aspect 

ratio anisotropic cells.  

 

Finally, in terms of computer resource, all three cases were 

run on just one of the eight nodes on our Intel PHI cluster, Cases 

1, 2 and 3 needed wall-clock times of ~32, ~28 and ~6 hours per 

characteristic flow-past time scale. This clearly demonstrate our 

progress towards our ultimate goal of overnight turn around. 

Case VKI-LS-3 was 3rd order accurate with 116M DOF, wall-

modelled and had near-wall Y+~30 and we could run 4.5 

characteristic flow passing periods, Tp, per 24 hour wall clock 

time. 

 

 

4 PERFORMANCE OF STEFR & THE INTEL PHI 
SYSTEM ON A LARGER, COMPLEX GEOMETRY 
PROBLEM 

 

Finally, a very much larger test case, the NASA-Gulfstream 

airframe landing gear [20], is included to illustrate the 

performance of the present STEFR approach on our low cost 

Intel PHI based computing system. The geometry and details of 

the associated high order are shown on Figure 18. Statistics for 

the mesh and LES run configurations are listed on Table 3 of 

Appendix A 

 

This case had 862M DOFs and was run on all eight nodes of 

our low-cost cluster and achieved a wall-clock time of ~14 hours 

per characteristic flow past time based on the size of strut – 

within our 24 hour goal! 

 
 

 
 

 
 

Figure 18.The geometry of the generic NASA/Gulfstream 

landing gear with a detail views of the mesh showing the 

high order collocation points 

 

As a single snapshot visualization of the results, Figure 19 

shows an iso-surface (visualized by wireframe) of Q-criterion 

(Q=800000) of a transient result for NASA/Gulfstream Landing 

Gear Case. Noise producing wake structures are clear. Full post-

processing will be presented in a forthcoming paper. 
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Figure 19. Iso-surface (visualized by wireframe) of Q-

criterion (Q=800000) for a snapshot of a transient result for 

NASA/Gulfstream Landing Gear Case, colored by Mach 

number 

 

5 CONCLUSIONS 
 

The overall aim of our research is to enable overnight high 

fidelity LES for realistic industry problems on affordable 

computing resource. We have adopted a “3E” approach: high 

spatial discretization Efficiency on general unstructured meshes, 

high Efficiency accurate time integration and high computing 

Efficiency on modern low cost HPC hardware. The motivation 

in this paper is not only to provide some validation evidence for 

the functional performance of the present STEFR method but 

also to extract data on the computational efficiency on our novel 

hardware architecture.  

 

The STEFR method, is able to use coarser meshes but with 

higher order the discretization is able to resolve into the higher 

frequency spectrum for LES. The simulations benefit from a 

significant speed up by using time accurate local time-stepping, 

compared to conventional uniform time stepping. Validation 

results with two standard turbine cases are very encouraging. 

 

In terms of wall-clock time, our adoption of a novel 

hardware platform and associated modifications to our basic 

LES solver architecture clearly demonstrate our progress 

towards our ultimate goal of overnight turn-around. 
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APPENDIX A 
 

Table 1. Configurations for low pressure turbine blade T106A simulations, flow passing time 𝑇𝑝 is based on the size of 

chord length  

 

Case ID Inlet 

turbulence 

intensity 

Near wall 

resolution 

Order of 

accuracy 

Speed 

Up 

Ratio  

x+ y+ z+ Number 

of 

elements 

Number 

of DOFs 

Number of 

nodes on 

cluster 

Wall-clock 

time for 

1𝑇𝑝(hours) 

T106A-

1 

0 Wall-

resolved 

3rd 7.32 27.2 3.07 27.2 460K 58.7M 1 27.33 

T106A-

6 

0 Wall-

resolved 

3rd 9.88 18.1 3.07 18.1 1.27M 166M 4 19.1 

T106A-

3 

0 Wall-

model 

3rd 11.53 27.2 16.1 27.2 409K 52.3M 1 11.4 

T106A-

4 

0 Wall-

resolved 

4th 8.27 45.4 5.15 45.4 110K 31M 1 38.8 

T106A-

11 

3.8% Wall-

resolved 

4th 

 

8.27 45.4 5.15 45.4 110K 31M 1 38.8 

 

 

 

Table 2. Configurations for transonic turbine blade VKI-LS59 simulations , flow passing time 𝑇𝑝 is based on the size of 

chord length  

 

Case ID Inlet 

turbulence 

intensity 

Near wall 

resolution 

Order of 

accuracy 

Speed 

Up 

Ratio 

x+ y+ z+ Number 

of 

elements 

Number 

of DOFs 

Number of 

nodes on 

cluster 

Wall-

clock time 

for 

1𝑇𝑝(hours) 

VKI-

LS59-1 

0 Wall-

resolved 

3rd 8.07 106.5 1.5 106.5 440K 54.8M 1 28.25 

VKI-

LS59-2 

0 Refined 

wall-

resolved 

3rd 12.97 15.7 3 15.7 1.07M 137.3M 4 23.37 

VKI-

LS59-3 

0 Wall-

model 

3th 

 

5.33 15.7 30 15.7 902K 115.9M 1 5.26 

 

 

 

Table 3. Configurations for landing gear acoustic simulation, flow passing time 𝑇𝑝 is based on the size of struct length  

 

Number of 

cells 

Order of 

accuracy 

Number of 

DOFs 

Memory 

comsuming

(GB) 

Maximum(~) 

local time 

step(s), d𝑡𝑚𝑎𝑥 

Minimum(~) 

local time 

step(s), d𝑡𝑚𝑖𝑛 

Coarsest 

cell size 

(mm) 

Finest 

cell size 

(mm) 

11175544 THIRD 862,615,44

0 

301.1 3.34e − 05 6.12e − 10 114.3 0.0018 

 

 

Case ID Near wall 

resolution 

Order of 

accuracy 

Speed Up Ratio Number of nodes on cluster Wall-clock time for 1𝑇𝑝(hours) 

Landing-

Gear-1 

Partly Wall-

resolved 

3rd 34.85 8 14.02 

 


